
4. Hardware-Supported Data Structures 

The TMS34010 supports several data structures at the machine level: 

• Fields are configurable data structures whose length can be defined 
within the range 1 to 32 bits. Two field sizes can be defined simul-
taneously. A field can begin and end at arbitrary bit addresses. 

• Bytes are a special case of field in which the field length is fixed at eight 
bits and is sign extended. Bytes can begin on any bit boundary within 
a word. 

• Pixels are configurable data structures; pixel length can be programmed 
to be 1, 2, 4, 8, or 16 bits (always a power of two). Pixels are aligned 
so that they do not cross word boundaries in memory. 

• Two-dimensional pixel arrays are rectangular groups of pixels that 
are manipulated using the PIXBLT (pixel block transfer) and FILL (pixel 
block fill) instructions. A pixel array can be moved from one area of 
memory to another in a single PixBlt operation. It can be combined with 
another array of the same size by performing Boolean or arithmetic op-
erations on the corresponding pixels of the two arrays. 

The number of bits in a pixel, field, or array is programmable, but byte length 
is fixed. Two field sizes and one pixel size can be specified simultaneously. 
The size and starting addresses of the pixel arrays that are manipulated during 
a PixBIt operation are specified by the values loaded into dedicated hardware 
registers. 

Topics in this section include: 

Section Page 
4.1 Fields 	  4-2 
4.2 Pixels 	  4-6 
4.3 XY Addressing 	  4-11 
4.4 Pixel Arrays 	  4-14 

4 -1 



Hardware-Supported Data Structures - Fields 

4.1 Fields 

The TMS34010 supports two software-configurable field types, Field 0 and 
Field 1. A field in memory is defined by two parameters: 

• Starting address 

• Field size (1 to 32 bits) 

A field's starting address is the address of the field's LSB. A field can begin 
at an arbitrary bit address in memory. When a field is moved from memory to 
a general-purpose register, the field is right justified within the register; that 
is, the field's LSB coincides with the register's rightmost bit (bit 0). The reg-
ister bits to the left of the field are all 1s or all Os, depending on the values of 
both the appropriate FE (field extension) bit in the status register, and the sign 
bit (MSB) of the field. If FE=1, the field is sign extended; if FE=O, the field 
is zero extended. 

Field size can range from 1 to 32 bits. The lengths of fields 0 and 1 are defined 
by two 5-bit fields in the status register, FS0 and FS1. 

Figure 4-1 illustrates a field in memory. In this example, the field straddles the 
boundary between words N and N+1 in memory. Field extraction and in-
sertion is performed by on-chip hardware: 

• To move the field to a general-purpose register, the TMS34010 extracts 
the field from memory by reading word N and word N+1 in separate 
cycles. 

• To move the field from a general-purpose register, the TMS34010 inserts 
the field into memory by reading and writing word N, and reading and 
writing word N+1. 

The memory operations necessary to insert or extract a field are performed 
automatically by special hardware, and are transparent to software. 

32 Bit Logical Address 	 

2 
MSBs 

28-Bit 4 
LSBs 4 Physical Address 

31 	30 29 4 3 	0 

1
77  

► 4 	Word N-41 

Field 	01 
Size 

Memory  

14---Word N+1 

Figure 4 - 1. Field Storage in External Memory 

4-2 



Word N+1 I 	Word N 
Field 	 ►  

Hardware-Supported Data Structures - Fields 

In Figure 4-1, word N is pointed to by a 26-bit physical address output by the 
GSP to memory. This 26-bit address corresponds to bits 4-29 of the field's 
32-bit logical address. The four LSBs of the logical address point to the be-
ginning of the field within word N. 

The number of memory cycles required to extract or insert a field depends on 
how the field is aligned in memory. Field manipulation is more rapid when 
fields are stored in memory so that they do not cross word boundaries. Figure 
4-2 illustrates various cases of alignment and nonalignment of fields to word 
boundaries in memory. Given a field starting address and field length, the 
memory controller will recognize the specified field alignment as one of the 
seven cases in Figure 4-2. Field extraction and field insertion are performed 
in a manner that requires the minimum number of memory cycles. 

Case A 14-  Word N  
16-Bit Field 

Case 

Case C 

Case D 14  Word Nil I 	Word N  
	Field --114 

Case E I Word N+1 I 	Word N  
14- Field 	 

Case F I  Word N+1 	I 	Word N 	I 
Field ---14 

Case G I Wo.d N+2 I Word N+1 I 	Word N 
4 	 Field 	 ► 1 

Figure 4-2. Field Alignment in Memory 

Case A A 16-bit field is aligned on word boundaries. Field extraction requires a single 
read cycle, and field insertion requires a single write cycle. 

Cases 
B1 -B3 The field length is less than 16 bits. 

• In Case B1, the field starting address is not aligned to a word boundary, 
although the end of the field coincides with the end of the word. 

• In Case B2, the field starting address is aligned to a word boundary, but 
the end of the field does not coincide with the end of the word. 

• In Case B3, the field length is 14 bits or less, and neither the start nor the 
end of the field is aligned to a word boundary. 

4-3 



Hardware-Supported Data Structures - Fields 

For Cases B1-B3, a field extraction requires a single read cycle. A field in-
sertion requires the following sequence of memory cycles: 

1) Read word N 
2) Write word N 

Case C A 32-bit field is aligned on word boundaries. A field extraction requires the 
following sequence of memory cycles: 

1) Read word N 
2) Read word N+  1 

A field insertion requires the following sequence of memory cycles: 

1) Write word N 
2) Write word N+ 1 

Case D The field size is greater than 16 bits. The field starting address is not aligned 
to a word boundary, but the end of the field coincides with the end of the 
word. A field extraction requires the following sequence of memory cycles: 

1) Read word N 
2) Read word N+ 1 

A field insertion requires the following sequence of memory cycles: 

1) Read word N 
2) Write word N 
3) Write word N+ 1 

Case E The field size is greater than 16 bits. The field starting address is aligned to a 
word boundary, but the end of the field does not coincide with the end of the 
word. A field extraction requires the following sequence of memory cycles: 

1) Read word N 
2) Read word N+ 1 

A field insertion requires the following sequence of memory cycles: 

1) Write word N 
2) Read word N+ 1 
3) Write word N+1 

Case F The field straddles the boundary between two words. Neither the start nor the 
end of the field is aligned to a word boundary. A field extraction requires the 
following sequence of memory cycles: 

1) Read word N 
2) Read word N+ 1 

A field insertion requires the following sequence of memory cycles: 

1) Read word N 
2) Write word N 
3) Read word N+1 
4) Write word N+ 1 

Case G The field size ranges from 18 to 32 bits, and the field straddles two word 
boundaries. Neither the start nor the end of the field is aligned to a word 
boundary. A field extraction requires the following sequence of memory cy-
cles: 

1) Read word N 
2) Read word N+1 
3) Read word N+2 

4-4 



Hardware-Supported Data Structures - Fields 

A field insertion requires the following sequence of memory cycles: 

1) Read word N 
2) Write word N 
3) Write word N+1 
4) Read word N+2 
5) Write word N±2 

A field insertion modifies only the portion of a word that lies within a field. 
The GSP memory controller must perform a read-modify-write operation when 
a field that does not begin and end on even 16-bit word boundaries is to be 
written to memory. This occurs when the four LSBs of the address are not 0, 
or when the specified field size is a value other than 16 or 32. The memory 
controller uses these two parameters (address LSBs and field size) to produce 
a mask that identifies the bits in the word corresponding to the field. Hard-
ware uses the mask to perform the read-modify-write cycle. The GSP's local 
memory control logic automatically generates the the mask and executes the 
read-modify-write operation; this is transparent to software. 

Figure 4-3 shows an example of inserting a 5-bit field stored in a register to 
logical address >0000 0008. 

• In Figure 4-3 a, the field to be inserted is shown right-justified in the 
16 LSBs of the designated general-purpose register. 

• In b, memory controller hardware has rotated the field to align it with the 
destination in memory. 

• In c, the GSP reads the original word from the destination in memory. 

• In d, the mask is generated to designate the bits to be modified. 

• In e, the field is inserted into the word from memory, and the result is 
written back to the destination address in memory. 

15 14 13 12 11 10 9 8 7 8 5 4 3 2 1 0 

(a) Field to be Inserted 

(b) Rotate to align to bit 8 

(c) Initial destination data 

(d) Mask generated 

(e) Final destination data  

IX X X X X X X X X X XFFFFFI 

IX X 	 FFFFFXXXXXXXXJ I 

IAA A A A A A A A A AA A A A Al 

jogg11 111ogoogg ool 

IAA A F F F F F A A A A A A A AI 

Figure 4-3. Field Insertion 

In the more complex case in which a field straddles one or two word bound-
aries in memory, the portion of the field lying within each word is inserted into 
that word using the methods described above. 

4-5 



Hardware-Supported Data Structures - Pixels 

4.2 Pixels 

The term pixel has two meanings in the context of a TMS34010-based 
graphics system. Outside the GSP, a pixel is a picture element on a display 
surface. Inside the GSP, a logical pixel is a software-configurable data struc-
ture supported by the GSP instruction set. The logical pixel data structure in 
GSP memory contains the information needed to specify the attributes of a 
picture element visible on a screen. The information for a horizontal line of 
pixels on the screen is usually stored in consecutive words in memory. 

4.2.1 Pixels in Memory 

Within GSP memory, the pixel data structure is defined by two parameters: 

• Starting address 

• Pixel size 

A pixel's starting address is the address of the LSB of the pixel. 

Pixel size (the number of bits per pixel) is defined in the PSIZE register. A 
pixel can be 1, 2, 4, 8, or 16 bits long. The GSP treats pixels as a special case 
of a field in which the field size is constrained to be a power of two. However, 
pixels do not cross word boundaries within memory; they are aligned within 
memory so that an integral number of pixels is contained within the bounda-
ries of a memory word. For example, a 2-bit pixel should begin at an even bit 
address whose LSB is 0, a 4-bit pixel should begin at a bit address whose two 
LSBs are Os, and so forth. 

When a pixel is moved from memory to a general-purpose register, the pixel 
is right justified within the register. That is, the LSB of the pixel coincides 
with the rightmost bit (bit 0) of the register. Register bits to the left of the 
pixel are loaded with Os. 

Figure 4-4 illustrates pixel storage in memory. The pixel is located within the 
word pointed to by the 26-bit physical address corresponding to bits 4-29 of 
the 32-bit logical address of the pixel. The four LSBs of the logical address 
specify the displacement of the pixel within the word. When the pixel length 
is less than 16, each word contains two or more pixels. 

Pixel extraction and insertion is performed by on-chip hardware in a manner 
that requires the minimum number of memory cycles. (The operations are 
transparent to the programmer.) In the worst case, two memory cycles (a read 
followed by a write) are required to insert a pixel of less than 16 bits. Inserting 
a 16-bit pixel requires a single write cycle, and extracting a pixel (1 to 16 bits) 
requires a single read cycle. 

4-6 



Hardware-Supported Data Structures - Pixels 

4 	 
2 

M4  88^ 	 

31 30 29 

  

32 Ed Logical Address 

26-Bit 
Physical Address 

     

     

4 
LSBe 

4--s 

     

  

N 	 4 3 

 

..."ll•r£417.- • 
•••••••••,,,........ ••••, • 	 ,, 	 ,, 	 , 

Pixel Size 

	Word -it- 

Figure 4-4. Pixel Storage in External Memory 

4.2.2 Pixels on the Screen 

Figure 4-5 illustrates the mapping of pixels from memory to a display screen. 
The screen refresh function outputs pixels in the sequence of ascending pixel 
addresses. However, the electron beam sweeps from the left edge of the 
screen to the right edge during each horizontal scan interval, so pixels appear 
on the screen in the opposite order of their representation in memory. That is, 
the least significant pixel (in terms of bit address) appears on the left, and the 
most significant pixel appears on the right. 

Video Monitor Screen 

Word Word Word 
N-1 	N N+1 

■.•••, 	ta 	 

Memory 

Pixel Pixel Pixel Pixel 
4N+3 4N+2 4N+1 4N 

14----Word N+1 

 

Word N 	"la 	Word N 

 

Figure 4-5. Mapping of Pixels to Monitor Screen 

The GSP allows a pixel to be identified either in terms of its XY coordinates 
on the screen, or in terms of the address of the logical pixel in memory. These 
two methods are called XY addressing and linear addressing, respectively. 

Memory it  
_."1•"Fi• 

4-7 



Hardware-Supported Data Structures - Pixels 

When XY addressing is used, the origin can be selected to lie in either the 
upper left or lower left corner of the screen. The position of the origin is 
controlled by the ORG bit in the DPYCTL register. Figure 4-6 a illustrates the 
default coordinate system (ORG =0), in which the origin of the two coordinate 
axes is located in the upper left corner of the screen. Figure 4-6 b shows the 
alternate coordinate system (ORG=1) in which the origin is located in the 
lower left corner of the screen. 

■ X 

(a) 

Default 
Screen 
Origin 

Y 

(b) Monitor 
Screen 

Alternate 
Screen 

V 
 Origin 

	■ X 

 

Figure 4-6. Configurable Screen Origin 

Using the default screen origin, Figure 4-7 illustrates the mapping of pixels 
from memory to the screen. In Figure 4-7, horizontal movement represents 
travel in the X direction on the screen. Vertical movement represents travel in 
the Y direction. The depth of the buffer represents the pixel size. The "on-
screen memory" contains the pixels that appear on the screen. 

The display memory shown in Figure 4-7 is shown in terms of a "screen for-
mat" rather than the "memory format" used in the memory map shown in 
Figure 3-3 on page 3-4. The screen format places the lowest pixel address 
at the upper left corner of the memory map. This is the same relative orien-
tation in which pixels appear on the screen. Compare this to the memory 
format shown in Figure 3-3, which places the lowest bit address at the lower 
right corner of the memory map. This convention is frequently used in in-
dustry to represent the relative location of addresses in memory. In this doc-
ument, assume the standard memory format is used unless the screen format 
is indicated. 

Figure 4-8 illustrates the mapping of XY coordinates to the on-screen memory. 
For simplicity, assume that the screen origin coincides with the upper left 
corner of the display memory. P represents the X extent of the display memory 
and N represents the Y extent. Each box represents a pixel within the memory. 
The number within the box represents the pixel's memory location, relative to 
the beginning of the on-screen memory. The number in the box is multiplied 
by the number of bits per pixel to produce the address offset of the pixel from 

Monitor 
Screen 

4-8 



Hardware-Supported Data Structures - Pixels 

the start of the display memory. Since the pixel size is constrained to be a 
power of two, the multiply can be replaced by a simple shift operation. 

	■ X 

    

    

 

On-Screen 
Memory 

 

Off-Screen 
Memory 

    

Extent 

Display Memory 

    

	/.j  
	PeK_ Pixel Size 

(bits/pixel) 

  

X Extent 

 

   

    

V 
Increasing 

Y=0 

Y=1 

Y=2 

Y4I-2 

Y*I-1 

Figure 4 - 7. Display Memory Dimensions 

	►  Increasing 
X 

X=0 	X=1 	X=2 X=3 
	

X=P-2 X=P-1  

0 
	

1 
	

2 
	

3 

P 
	

P+1 
	

P+2 P+3 

2P 
	

2P+1 2P+2 2P+3 

    

 

P-2 

 

P-1 

 

2P-2 

 

2P-1 

    

 

3P-2 

 

3P-1 

    

)

(N-1)P 
-2 

 NP-2 

  

  

 

(N-1)P 
-1  

NP-1 

    

Display Memory 
P = X Extent 
N = Y Extent 

Each box contains a pixel. 
The number inside the box 
Is the pixel's XY address. 

Display Pitch= (X extent) x (pixel size) 
= Differences in 32-bit memory addresses 

of two vertically adjacent pixels 

Figure 4-8. Display Memory Coordinates 

4-9 



Hardware-Supported Data Structures - Pixels 

4.2.3 Display Pitch 

The term display pitch refers to the difference in memory addresses between 
two pixels that appear in vertically adjacent positions (one directly above the 
other) on the screen. In Figure 4-8, the pitch is calculated as P times the pixel 
size, where P is the X extent of the display memory. 

The display pitch must be a power of two in order to support XY addressing 
of pixels on the screen. Linear addressing of pixels on the screen imposes 
fewer restrictions. In particular, the display pitch for linear addressing may be 
any value that is a multiple of 16; that is, the four LSBs of the address must 
be Os. Of course, features such as automatic window checking are not avail-
able with linear addressing. 

The pitch of a pixel array is the difference in memory addresses of two verti-
cally adjacent pixels in the array. If the array occupies a rectangular area of the 
screen, the array pitch is the same as the display pitch. 

During a pixel operation such as a PixBlt, the source and destination array 
pitches are specified in separate dedicated hardware registers. This facilitates 
the transfer of pixel arrays between on-screen and off-screen memory, which 
may have different pitches. 

A sample display pitch calculation is shown below. In this example, the pixel 
size is four bits and the X extent of the pixel display is 640 pixels. However, 
since XY addressing and windowing are to be used, the physical memory is 
organized so that there are 1024 pixels between successive scan lines. Thus, 
the X extent of physical display memory is 1024, and the display pitch is: 

Display Pitch = (1024 pixels/line) x (4 bits/pixel) 

= 4096 (which is 2 12 ) 

4-10 



Hardware-Supported Data Structures - XY Addressing 

4.3 XY Addressing 

The TMS34010 allows pixel addresses to be specified in terms of two-di-
mensional XY coordinates that correspond to locations on the screen. This is 
referred to as XY addressing. XY addressing has several benefits: 

• TMS34010 software can be easily ported from one display configuration 
to another. System-dependent details such as the number of bits per 
pixel and the X extent of the display memory are transparent to the 
software, but are used by the machine to automatically convert the XY 
coordinates to the address of a pixel in memory. 

• XY addressing allows you to think in terms of the high-level concept of 
XY coordinates rather than in terms of the machine-level mapping of 
pixels into memory. 

• XY addressing facilitates such functions as window clipping. 

Figure 4-9 illustrates XY addressing format. The XY address is stored in a 
32-bit general-purpose register. The X and Y components are each treated 
as 16-bit signed integers. The X component resides in the 16 LSBs of the 
register, and is right justified to bit 0 of the register. The Y component occu-
pies the 16 MSBs of the register, and is right justified to bit 16 of the register. 
XY coordinates in the range (-32768,-32768) to (+32767,+32767) can be 
represented. The clipping window, which identifies the pixels that can be al-
tered during drawing operations, is restricted to positive X and Y coordinate 
values, (0,0) to (+32767,+32767). Thus, pixels identified by negative X or 
Y coordinates must always lie outside the window. 

Figure 4-9. Pixel Addressing in Terms of XY Coordinates 

4.3.1 XY-to-Linear Conversion 

The TMS34010 automatically converts a pixel's XY address to a 32-bit logical 
address (linear address) for all instructions that use XY addressing. Three 
parameters are used to perform XY-to-linear conversion: 

• The logical pixel size (stored in the PSIZE register) 

• A pitch conversion factor (stored in the CONVSP or CONVDP registers) 

• An offset defining the XY origin (stored in the OFFSET register) 

4-11 



Hardware-Supported Data Structures - XY Addressing 

The GSP uses the following formula to calculate the physical address associ-
ated with the XY address: 

Address = [(Y x display pitch) OR (X x pixel size)] + offset 

Since the display pitch and pixel size are both powers of two, the calculation 
is performed using only shift, OR, and add operations. Window clipping may 
be used to detect out-of-bounds (negative) X or Y values before this calcu-
lation is performed. 

Linear addresses are formed from XY addresses by simply concatenating the 
binary numbers that represent the X and Y coordinate values, as shown in 
Figure 4-10. The number of Os to the right of the X component of the address 
depends on the number of bits per pixel, and equals log2(pixel size). The 
displacement of the Y component within the 32-bit logical address in Figure 
4-10 is equal to log2(display pitch). Finally, a 32-bit offset is added to the 
address in Figure 4-10 to calculate the address in memory of the pixel at co-
ordinates (X,Y). The offset corresponds to the linear address in memory of the 
pixel at (0,0). 

0 0 	. 0 
	

0 0 ... 0 

X 
MSBs are Os 	Component 

	
Component 	LSBs are Os 

Note: The shift value for the Y component is contained in 
CONVSP or CONVDP register, depending on the instruction being exe-

cuted. 

Figure 4-10. Concatenation of XY Coordinates in Address 

The GSP uses the pitch conversion factors CONVSP and CONVDP to com-
pute the displacement of the Y component within the address, as shown in 
Figure 4-10. The Y component is displaced from bit 0 of the address by an 
amount equal to log2(pitch), which the hardware obtains by inverting the five 
LSBs of the appropriate CONVSP or CONVDP register. These values must 
be loaded through software before executing an instruction that uses XY ad-
dressing. CONVSP (source address pitch) is used if the XY address points to 
a source pixel or pixel array; CONVDP (destination address pitch) is used if 
the XY address points to a destination pixel or pixel array. The pixel size stored 
in the PSIZE register is used similarly to determine the displacement of the X 
component, as shown in Figure 4-10. 

The OFFSET register contains the linear memory address of the pixel located 
at coordinates (0,0) on the monitor screen. The OFFSET register is used in 
translating XY coordinates into linear addresses, but does not control which 
region of the display memory is output to refresh the video screen. It is a vir-
tual screen origin. It allows the coordinate axes of the XY address to be 
translated to an arbitrary position in memory. The OFFSET register supports 
the use of "window relative" addressing in which the X and Y coordinates are 
specified relative to coordinate offsets in the display memory. The position 
and size of a window can be specified arbitrarily. A new offset specified in 
terms of XY coordinates can be converted to a linear address using the CVXYL 
instruction. CVXYL converts an XY address to a linear address for the purpose 
of absolute memory addressing, or to use special features available to in-
structions that use linear addressing. Figure 4-11 illustrates the XY-to-linear 
conversion process. 

4-12 



Hardware-Supported Data Structures - XY Addressing 

31 
	

16 15 
	

0 

(a) Original XY address 

(b) Extract 18 LSBs and 
extend with Os 

(c) Rotate X left by 
log2  (pixel slze) 

(d) Extract 18 MSBe from 
original XY adaress 

(e) Rotate Y left by 
18+log2  (vertical pitch) 

(0 Bltwise logical-OR together 
shifted X and Y components 

(g) Add offset from B4 to 
displacement above to 
get final memory address 

10000001 	X 

l000000000000000000000l  

00000000000000000000l 	x 	101 

l00000000000 00000l 

Y 	10000000000001 

1000 01 
	

I 	X 	1001 

Memory Address 

Figure 4-11. Conversion from XY Coordinates to Memory Address 

• Step a shows the original XY address. 
• The X component is extracted in step b. 
• In step c, the X component is shifted left by log2(pixel size). The result 

of step c represents the product of the X component and the pixel size. 
• The Y component is extracted in step d. 
• In step e, the Y component is rotated left by 16+log2(display pitch). 

The result of step e is Y multiplied by the display pitch. 
• In step f, the results of steps c and e are bitwise-ORed to form the dis-

placement in memory of the pixel at (X,Y) from the pixel at the origin. 
• In step g, the offset is added to produce the final memory address. 

The example of Figure 4-11 corresponds to a pixel size of four bits and a pitch 
of 4,096. The six MSBs of the X half of the XY address (bits 10-15) in Figure 
4-11 must be Os to produce a valid memory address. For this example, the 
clipping window should be set to disable writes to pixels having X coordinate 
values outside the range 0 to +1023. 

Generally, given a display with a pitch of 2n, a valid memory address is pro-
duced by the XY translation process shown in Figure 4-11 when only the n 
LSBs of the X half of the XY address are nonzero (that is, when the 15-n 
MSBs are 0). X values may be in the range -32768 to +32767 before clip-
ping. However, after clipping, the X value should be a positive number in the 
range 0 to (X extent -1), where X extent = pitch/pixel size. The GSP's auto-
matic window clipping can be configured to clip pixels lying outside the 
window; hence, no software overhead is incurred in clipping. Y values lying 
outside the window are clipped in a similar fashion. 

4-13 



Default 
Starting 
Address 

2-Dimensional 
Pixel Array 

Ii 	 AX 

T 
AY 

Graphics Operations - Pixel Arrays 

4.4 Pixel Arrays 

A rectangular area of the screen that is DX pixels wide and DY pixels high is 
an example of a data structure called a two-dimensional pixel array. The array 
contains DX x DY pixels, but can be manipulated by the TMS3401 0 as one 
structure. The TMS34010's instruction set includes a powerful set of raster 
operations, called PixBlts, that manipulate pixel arrays on the screen and 
elsewhere in memory. 

Figure 4-12 shows a pixel array occupying a rectangular region in display 
memory. The DX pixels in each row of the array are packed together into ad-
jacent cells in the display memory. Rows do not generally occupy adjacent 
areas of memory, but are separated from each other by a constant displace-
ment called the array pitch. The array pitch is the difference in memory ad-
dresses between the start of one row and the start of the row directly beneath 
it. In the Figure 4-12 example, the array pitch is equal to the display pitch. 
The product of the array width DX and the pixel size must be less than or equal 
to the pitch. 

Display Memory 

AX = Pixels per row of array 
AY = Pixels per oolumn of array 

Figure 4 - 12. Pixel Array 

A pixel array is specified in terms of its width, height, pitch, and starting ad-
dress. The starting address is the address of the first pixel to be moved during 
a PixBlt. The default starting address is simply the base address of the array; 
that is, the address of the pixel that has the lowest address in the array. 

If as shown in Figure 4-12, the XY origin is located in its default position at 
the upper left corner of the screen. The default starting address is the address 
of the pixel located in the upper left corner of the array. When a PixBlt oper-
ation moves the pixels from a source pixel array to a destination array, the 
pixels in each row are moved in sequence from left to right, and the rows are 
moved in sequence from top to bottom. 

4-14 



Graphics Operations - Pixel Arrays 

Certain PixBIt operations allow the starting pixel to be specified as one of the 
pixels in the other three corners of the array. This feature is provided so that 
when the source and destination arrays overlap, the appropriate starting corner 
can be selected to ensure that no data is lost by being overwritten during 
PixBIt execution. The order in which pixels in the array are moved can be al-
tered to be from right to left or from bottom to top as appropriate to accom-
modate the change in starting corner. 

The starting address of a pixel array can be specified either in terms of the XY 
coordinates of the starting pixel (XY address), or the memory address of the 
starting pixel (linear address): 

• An array whose starting location is specified as an XY address is referred 
to as an XY array. In this format, the starting location of the array is 
identified by the XY coordinates of the first pixel in the array. 

• A pixel array whose starting location is specified as a memory address 
is referred to as a linear array. In this format, the location of the array is 
identified by the memory address of the first pixel (the pixel that has the 
lowest bit address) in the array. 

The XY array format has two advantages. First, the starting location of the 
array is specified in system-independent Cartesian coordinates rather than as 
a system-dependent memory address. Second, the GSP's window checking 
(which allows it to automatically detect an attempt to write a pixel inside or 
outside a specified window) can only be used in conjunction with XY ad-
dressing. 

The linear format's main advantage is that the array pitch does not have to be 
a power of two. This supports a wider variety of memory organizations. Using 
XY format, the array pitch is constrained to be a power of two. 

The general rules governing array pitch are as follows. When an array is spe-
cified in XY format, the pitch must be a power of two. The pitch for an array 
specified in linear format may be any multiple of 16; that is, the four LSBs of 
the pitch must be Os. There are a few important exceptions to the second rule 
which are discussed below. 

For the special case of a PIXBLT B,XY or PIXBLT B,L instruction, the source 
pitch may be any value. This feature supports efficient use of memory by al-
lowing adjacent rows of the source array to be packed together with no in-
tervening gaps. The destination pitch must still be a multiple of 16. 

Under certain conditions the linear source array specified for a PIXBLT L,XY 
or PIXBLT B,XY must have a pitch that is a power of two. This is necessary 
when the linear start address for the array has to be adjusted in the Y direction 
due to one of the following conditions: 

• The source array is automatically preclipped to lie within a rectangular 
window. 

• One of the lower two corners of the source array (refer to Figure 4-1 2) 
is selected to be the start address. 

In either case, the start addresses specified for both the source and destination 
arrays are automatically adjusted, and for this purpose the conversion factors 
specified in the CONVSP and CONVDP registers must be valid. 

4-15 



Graphics Operations - Pixel Arrays 

While PixBlts are useful for moving arrays from one area of the screen to an-
other, they can also be used to move arrays to the screen from other parts of 
memory, and vice versa. The pitch for the off-screen pixel array can be spec-
ified independently of the pitch for the on-screen array. This permits off-
screen data to make efficient use of storage, regardless of the display pitch. 
On-screen objects may be defined as XY arrays but may be more efficiently 
stored as linear arrays in off-screen memory. The PIXBLT instructions support 
the transfer of a linear array to an XY array, and vice versa. PIXBLT in-
structions can also be used to rapidly move blocks of non-pixel data (ASCII 
characters, for example) from one location in memory to another. 

4-16 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16

